

East Anglia ONE North and East Anglia TWO Offshore Windfarms

Clarification Note

SuDS Infiltration Note

Applicant: East Anglia TWO and East Anglia ONE North Limited

Document Reference: ExA.AS-9.D4.V2

SPR Reference: EA1N EA2-DWF-ENV-REP-IBR-001131

Date: 13th January 2021 Revision: Version 02

Author: Royal HaskoningDHV

Applicable to East Anglia ONE North and East Anglia TWO

SuDS Infiltration Clarification Note

	Revision Summary							
Rev	Date	Prepared by	Checked by	Approved by				
001	17/11/2020	Paolo Pizzolla	Lesley Jamieson / Ian Mackay	Rich Morris				
02	13/01/2021	Paolo Pizzolla	Lesley Jamieson / Ian Mackay	Rich Morris				

	Description of Revisions					
Rev	Page	Section	Description			
001	n/a	n/a	Final for Deadline 2			
02	n/a	n/a	Final for Deadline 4			

Table of Contents

1	Introduction	1
1.1	Overview	1
<mark>2</mark> 2.1 2.2	Legislation and Relevant Guidance Legislation Guidance	3 3 3
3	Modelling Design Parameters	5
4	Results	7
5	Conclusion	8
6	References	10
Apper	ndix 1: Figures	11
Apper	ndix 2: Model Outputs	13

SuDS Infiltration Clarification Note 13th January 2021

Glossary of Acronyms

CIRIA	Construction Industry Research and Information Association
DCO	Development Consent Order
FoS	Factor of Safety
SCC	Suffolk County Council
SuDS	Sustainable Drainage Systems

Glossary of Terminology

Applicants	East Anglia TWO Limited / East Anglia ONE North Limited
East Anglia ONE North project	The proposed project consisting of up to 67 wind turbines, up to four offshore electrical platforms, up to one construction, operation and maintenance platform, inter-array cables, platform link cables, up to one operational meteorological mast, up to two offshore export cables, fibre optic cables, landfall infrastructure, onshore cables and ducts, onshore substation, and National Grid infrastructure.
East Anglia TWO project	The proposed project consisting of up to 75 wind turbines, up to four offshore electrical platforms, up to one construction, operation and maintenance platform, inter-array cables, platform link cables, up to one operational meteorological mast, up to two offshore export cables, fibre optic cables, landfall infrastructure, onshore cables and ducts, onshore substation, and National Grid infrastructure.
National Grid infrastructure	A National Grid substation, cable sealing end compounds, cable sealing end (with circuit breaker) compound, underground cabling and National Grid overhead line realignment works to facilitate connection to the national electricity grid, all of which will be consented as part of the proposed East Anglia TWO / East Anglia ONE North project Development Consent Order but will be National Grid owned assets.
National Grid substation	The substation (including all of the electrical equipment within it) necessary to connect the electricity generated by the proposed East Anglia TWO project / East Anglia ONE North project to the national electricity grid which will be owned by National Grid but is being consented as part of the proposed East Anglia TWO / East Anglia ONE North project Development Consent Order.
National Grid substation location	The proposed location of the National Grid substation.
Onshore substation	The East Anglia TWO / East Anglia ONE North substation and all of the electrical equipment within the onshore substation and connecting to the National Grid infrastructure.
Onshore substation location	The proposed location of the onshore substations for the proposed East Anglia TWO project and the East Anglia ONE North project.
Order limits	The limits shown on the works plans within which the authorised project may be carried out.
Projects	The East Anglia TWO Offshore Windfarm and the East Anglia ONE North Offshore Windfarm.

1 Introduction

1.1 Overview

- 1. This technical note accompanies an illustrative infiltration Sustainable Drainage System (SuDS) design in support of the Development Consent Order (DCO) applications (the Applications) for the East Anglia TWO project and the East Anglia ONE North project (the Projects) submitted by East Anglia TWO and East Anglia ONE North Limited (the Applicants).
- 2. The illustrative design addresses Suffolk County Council's (SCC) request to consider infiltration as part of the drainage design, in accordance with the SuDS drainage hierarchy (SCC, 2018). The Applicants have been asked by SCC to demonstrate that there is sufficient space within the Order limits of the onshore substation location and the National Grid substation location to accommodate infiltration features with a worst case infiltration rate of 10mm/hr and an appropriate Factor of Safety (FoS) (LA-005 of the Water Resources and Flood Risk Statement of Common Ground). SCC also requested that the Applicants demonstrate compliance with the SCC guidance for SuDS design (2018).
- 3. Works to be undertaken within the onshore substation location include (amongst other things) the construction of two co-located onshore substations (a substation for East Anglia TWO and East Anglia ONE North respectively and hereafter referred to collectively as the 'onshore substation') and National Grid infrastructure, at Grove Wood, Friston, and associated landscaping and surface water management infrastructure. It should be noted that the *draft DCO* (APP-REP3-011) allows for flexibility for either project to use either onshore substation location.
- 4. It is noted that the basis of the design presented within the Applications is for SuDS attenuation ponds with a discharge connection to the Friston watercourse at a discharge rate that remains in line with the pre-development greenfield runoff rate. This represents a reasonable design for the Projects and ensures no increase to the existing discharge to the Friston Watercourse. Further information on the attenuation design is set out in the *Outline Operational Drainage Management Plan* (an updated version has been submitted at Deadline 4, document reference ExA.AS-1.D4.V2)..
- 5. This document demonstrates the viability of incorporating infiltration as part of the design during operation of the Projects to manage drainage. The *Outline Code of Construction Practice* (REP3-022) covers surface water and drainage requirements during construction, including sediment management and pollution prevention.

SuDS Infiltration Clarification Note 13th January 2021

6. This document is applicable to both of the Projects and the Applications, and therefore is endorsed with the yellow and blue icon used to identify materially identical documentation in accordance with the Examining Authority's procedural decisions on document management of 23rd December 2019 (PD-004). Whilst this document has been submitted to both Examinations, if it is read for one project submission there is no need to read it for the other project submission.

2 Legislation and Relevant Guidance

2.1 Legislation

2.1.1 Flood and Water Management Act 2010

7. Under the Flood and Water Management Act 2010, Lead Local Flood Authorities (LLFAs) have responsibility for managing the risk of flooding from surface water, groundwater and ordinary watercourses. SCC is the LLFA covering the onshore development area and is required to deliver a strategy for local flood risk management in its area, to investigate flooding and to maintain a register of flood risk assets.

2.2 Guidance

2.2.1 Suffolk County Council SuDS Guidance

- 8. SCC's SuDS design guidance (2018) has informed the illustrative infiltration design. Section 5 of the guidance (Suffolk Design Principles) indicates that "soakage rates need to be above 5-10mm/hr for infiltration to be the sole means of drainage" (i.e. the first option within the surface water drainage hierarchy).
- 9. SCC guidance also states that the aim of a SuDS design "should be to discharge surface water runoff as high up the following hierarchy of drainage options as reasonably practicable:
 - i) into the ground (infiltration);
 - ii) to a surface water body (attenuation);
 - iii) to a surface water sewer, highway drain or another drainage system; or
 - iv) to a combined sewer".
- 10. As agreed in *Table 13* in the draft *Statement of Common Ground with the Councils* (REP1-072), the Applicants have therefore tested the SuDS design at an infiltration rate of 10mm/hr which is deemed to be a reasonable worst-case feasible infiltration rate.
- 11. The Applicants note that the application of the SuDS hierarchy is an iterative process dependent on site-specific conditions to identify an optimal drainage solution.

2.2.2 Construction Industry Research and Information Association

12. The Construction Industry Research and Information Association (CIRIA) SuDS Manual (2015) states that "Where components are designed to manage the 1:10 year or 1:30 year event, it is usual to specify that half emptying occurs within 24 hours. If components are designed to infiltrate events greater than the 1:30 year

SuDS Infiltration Clarification Note

13th January 2021

- event, designing to half empty in 24 hours can result in very large storage requirements and, with agreement from the drainage approving body, it may be appropriate to allow longer half emptying times".
- 13. On this basis, a 24hr and a 48hr half drain time has been included in the illustrative SuDS design for the 10mm/hr infiltration rate.

2.2.3 Sustainable Drainage Principles

- 14. 'Infiltration' refers to allowing or encouraging water to soak into the ground, through the natural hydrologic processes. This is normally the most desirable solution for the disposal of surface water from rainfall as it does not create additional runoff and contributes directly to the recharge of the underlying groundwater.
- 15. Ground investigations at the location of the onshore substations and National Grid infrastructure will be undertaken and will inform the final Operational Drainage Management Plan. Percolation tests will be undertaken as part of the detailed design process to determine the underlying permeability and the feasibility to dispose of surface water directly to ground or other engineered filtration systems, and to what degree.

3 Modelling Design Parameters

- 16. In order to demonstrate that sufficient space is available within the Order limits at the onshore substation location and the National Grid substation location to accommodate infiltration features, the following parameters have been modelled:
 - Infiltration rate of 10mm/hr;
 - 100% impermeable surface area for the onshore substations and National Grid infrastructure areas of hardstanding;
 - FoS of 1 modelled for SuDS basin storage areas;
 - FoS of 10 as a sensitivity check of the SuDS basin storage areas;
 - 100% impermeable area for the permanent operational access road; and
 - Attenuation of water during the 1 in 100 year plus 40% climate change scenario.
- 17. The modelling has considered both a 24hr and a 48hr half drain time and has used Flood Estimation Handbook (FEH) 2013 rainfall data as requested by SCC. This is produced by the UK Centre for Ecology and Hydrology¹.
- 18. A FoS of 10 has also been tested in the calculations for the indicative infiltration design. This approach is based on the guidance set out in Table 25.2 of the CIRIA SuDS Manual (2015).
- 19. The design parameters of the onshore substation and National Grid infrastructure are summarised in *Table 3.1*.

Table 3.1 Onshore Substation Location Area Infiltration Design Footprints (assumed to be 100% impermeable

Equipment	East Anglia TWO (m²)	East Anglia ONE North (m²)	National Grid Infrastructure (m²)
Overall substation operational footprint	32,300	32,300	44,950
Operational access road	13,	600	N/A
Overal cable sealing end compounds and cable sealing end with circuit breaker compound operational footprint	N.	/A	10,000

¹ https://fehweb.ceh.ac.uk/

SuDS Infiltration Clarification Note

Equipment	East Anglia TWO (m²)	East Anglia ONE North (m²)	National Grid Infrastructure (m²)
Permanent access road to sealing end compound	N	1,850	
SuDS basin footprint	16,637	(9,603)*	12,712 (7,520)*
Total impermeable area 94,837 (87,803)*	69,512 (64,320)*

^{*} Primary figures represent 24hr drainage specification. Figures in brackets represent the design sizing for 48hr drainage specification

4 Results

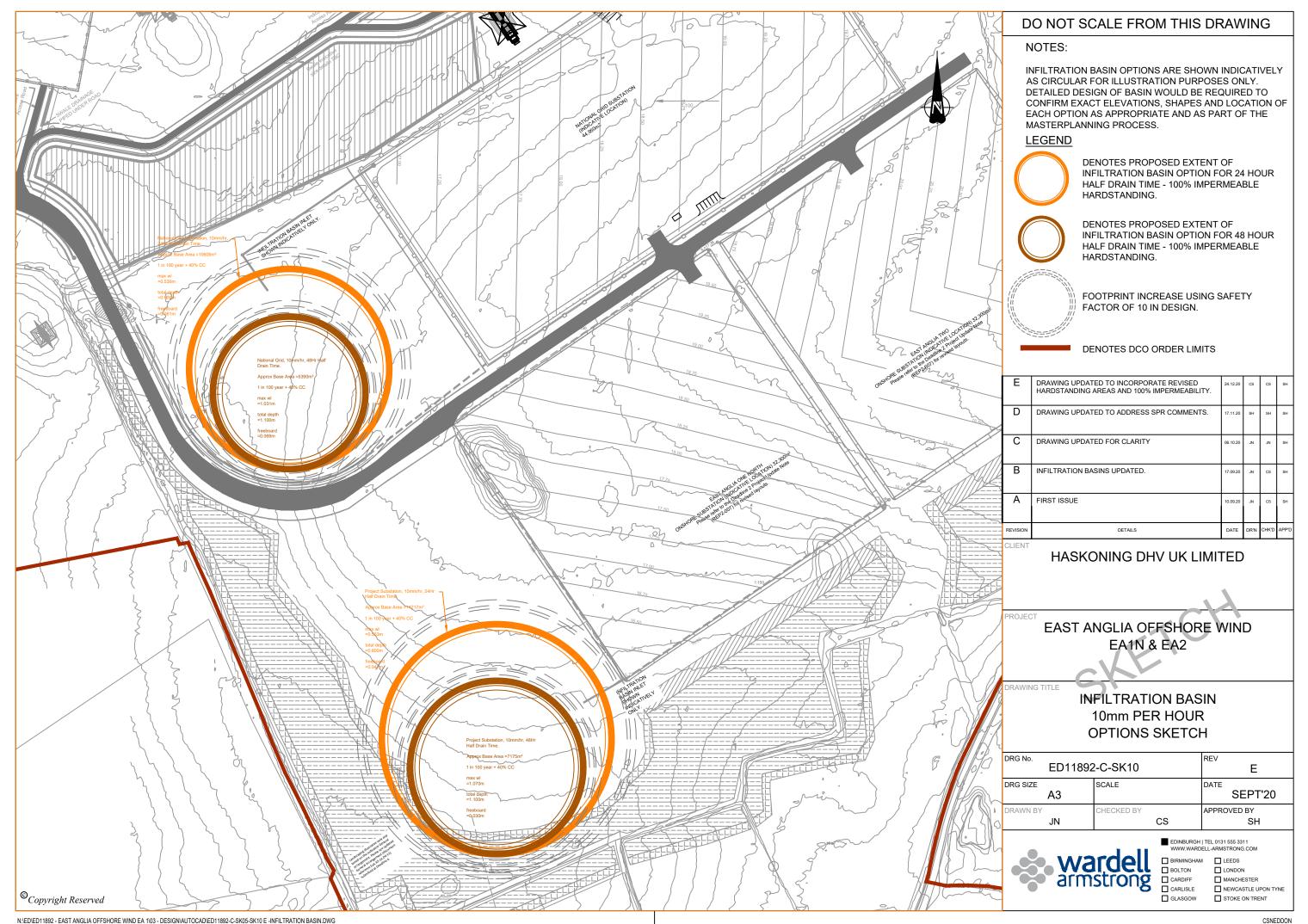
- 20. Drawing ED11892-C-SK10 (*Appendix 1*: Figures) shows the indicative sizing of the infiltration basins based on a 10mm/hr infiltration rate, for both the 24hr and 48hr half drain times. The figure demonstrates that, based on the parameters modelled and described in *section 3*, for both a 24hr half drain time and a 48hr half drain time, the infiltration basins can be accommodated within the Order limits whilst accommodating the mitigation planting presented within the Outline Landscape Mitigation Plan General Arrangement (an updated version has been submitted at Deadline 4, document reference ExA.AS-14.D4.V1).
- 21. Drawing ED11892-C-SK10 (*Appendix 1*) shows total depth of basin and respective maximum water level based on 1:100yr storms with 40% climate change. The Freeboard is the total depth of basin minus the total depth to maximum water level. For further information on depths and structure refer to page 4 (infiltration basin structure) of the modelling outputs for the 24hr and 48hr drain times for the onshore substation and National Grid infrastructure respectively (*Appendix 2*: Model Outputs).
- 22. The Applicants note SCC's comments at Deadline 3 regarding the need for an infiltration only design to achieve a half drain time of 24 hours under a 1 in 100 year plus 40% for climate change scenario. As shown in *Appendix 2*: Model Outputs, when applying a FoS of 10 to the parameters detailed in *section 3*, the half drain time is in exceedance of 7 days and therefore does not meet SCC's specification for an infiltration only design, nor does it meet with the Applicant's basis of design for a combined infiltration/attenuation system which includes a discharge connection point at the Friston Watercourse. The Applicants consider that an infiltration only SuDS design as per the SCC (2018) SuDS hierarchy would not be reasonably practicable to implement. It is therefore the Applicants' view that a SuDS design combining infiltration with a discharge connection point at the Friston Watercourse is appropriate.
- 23. Pre-construction ground investigations including infiltration testing will be conducted in order to determine whether the baseline infiltration rate is greater than 10mm/hr. This will inform the extent to which infiltration measures can be promoted and incorporated into the final SuDS design as appropriate.

5 Conclusion

- 24. An infiltration only scheme has been demonstrated to be unviable (**section 4**) on the basis that when applying a FoS of 10, it would not achieve the required half drain time of 24 hours. In accordance with SCC's SuDS Guidance (**section 2.2.1**) it is therefore appropriate for attenuation to be considered. The Applicants also consider it wholly inappropriate for the proposed national infrastructure projects to be constrained to an infiltration only surface water manage solution, when commitments have been made by the Applicants for a combined infiltration/attenuation system where the discharge to the Friston Watercourse would not exceed the pre-development greenfield run-off rates.
- 25. Under the indicative attenuation design presented in **section 6** of the **Outline Operational Drainage Management Plan** (updated version submitted at Deadline 4, document reference ExA.AS-1.D4.V2) the SuDS basins can be accommodated within the order limits and the discharge rate can be controlled to remain within the pre-development greenfield run-off rates.
- 26. The development of the final drainage design will be in line with best practice and guidance applicable to the Projects, recognising their classification as Nationally Significant Infrastructure Projects. It will, where appropriate, include a combination of infiltration measures and a connection to the Friston watercourse in the vicinity of Church Road which does not exceed the pre-development greenfield run-off rate. Further information will be detailed in the final Operational Drainage Management Plan secured under the *draft DCO* (REP3-011).
- 27. Requirement 41 was included in the *draft DCO* (REP3-011) submitted at Deadline 3 requires the Operational Drainage Management Plan to be submitted to and approved by the relevant planning authority. This requirement will also provide that the Operational Drainage Management Plan must accord with the Outline Operational Drainage Management Plan and be implemented as approved. This is separate to the *Outline Landscape and Ecological Management Strategy* (APP-584).
- 28. The final design of the SuDS will be developed to reflect the final detailed design of the onshore substation and National Grid infrastructure and will be informed by pre-construction ground investigations (including infiltration testing). It will incorporate infiltration measures, where appropriate, but will retain a discharge connection to the Friston watercourse. The Applicants have committed to ensuring that the final design of the SuDS will not increase the rate of discharge to the Friston watercourse over that currently experienced during storm events. The connection to the Friston watercourse remains an integral part of the Projects.

SuDS Infiltration Clarification Note 13th January 2021

- 29. Influencing factors for the final SuDS design will include:
 - Final sizing of onshore substation and National Grid infrastructure;
 - Final percentage of impermeable areas within the onshore substations and National Grid infrastructure;
 - Masterplanning considerations, including access road routing and landscaping;
 - Pre-construction ground investigation results, including infiltration test results; and
 - Discharge rate to the Friston watercourse which will not exceed the current discharge rate during storm events.


6 References

Construction Industry and Research Information Association (2015) The SuDS Manual (C753).

Suffolk County Council (2018) Sustainable Drainage Systems (SuDS): a Local Design Guide, Appendix A to the Suffolk Flood Risk Management Strategy.

Appendix 1: Figures

Appendix 2: Model Outputs

Wardell Armstrong LLP	Page 1	
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:56	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	pianage
XP Solutions	Source Control 2018.1	1

Half Drain Time : 1505 minutes.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

Storm		Max	Max	Max	Max	Status	
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15			14.799			2142.5	O K
30			14.850	0.200		2876.6	O K
60	min	Summer	14.900	0.250	41.9	3611.4	O K
120	min	Summer	14.959	0.309	42.5	4479.7	Flood Risk
180	min	Summer	14.999	0.349	42.9	5062.4	Flood Risk
240	min	Summer	15.028	0.378	43.1	5500.1	Flood Risk
360	min	Summer	15.070	0.420	43.6	6124.1	Flood Risk
480	min	Summer	15.098	0.448	43.8	6539.3	Flood Risk
600	min	Summer	15.116	0.466	44.0	6805.6	Flood Risk
720	min	Summer	15.127	0.477	44.1	6970.5	Flood Risk
960	min	Summer	15.134	0.484	44.2	7084.8	Flood Risk
1440	min	Summer	15.122	0.472	44.1	6894.4	Flood Risk
2160	min	Summer	15.088	0.438	43.7	6388.4	Flood Risk
2880	min	Summer	15.054	0.404	43.4	5876.0	Flood Risk
4320	min	Summer	14.990	0.340	42.8	4936.1	Flood Risk
5760	min	Summer	14.938	0.288	42.3	4158.0	ОК
7200	min	Summer	14.650	0.000	0.0	0.0	ОК
8640	min	Summer	14.650	0.000	0.0	0.0	ОК
10080	min	Summer	14.650	0.000	0.0	0.0	ОК
15	min	Winter	14.817	0.167	41.1	2402.3	ОК
30	min	Winter	14.874	0.224	41.7	3227.7	ОК
60	min	Winter	14.931	0.281	42.2	4055.9	ОК
120	min	Winter	14.998	0.348	42.9	5044.6	Flood Risk
180		Winter		0.393			Flood Risk
			15.076	0.426	43.6		Flood Risk
		Winter		0.475			Flood Risk
000				- •			1110K

Storm			Rain	${\tt Flooded}$	Time-Peak			
Event			(mm/hr)	Volume	(mins)			
				(m³)				
			122.248	0.0	19			
			82.572	0.0	34			
			52.458	0.0	64			
120	min	Summer	33.215	0.0	124			
180	min	Summer	25.480	0.0	182			
240	min	Summer	21.109	0.0	242			
360	min	Summer	16.158	0.0	362			
480	min	Summer	13.321	0.0	482			
600	min	Summer	11.410	0.0	602			
720	min	Summer	10.016	0.0	722			
960	min	Summer	8.080	0.0	960			
1440	min	Summer	5.860	0.0	1258			
2160	min	Summer	4.154	0.0	1620			
2880	min	Summer	3.224	0.0	1992			
4320	min	Summer	2.228	0.0	2808			
5760	min	Summer	1.712	0.0	3584			
7200	min	Summer	-0.012	0.0	0			
8640	min	Summer	-0.010	0.0	0			
10080	min	Summer	-0.008	0.0	0			
15	min	Winter	122.248	0.0	19			
30	min	Winter	82.572	0.0	33			
60	min	Winter	52.458	0.0	62			
120	min	Winter	33.215	0.0	122			
180	min	Winter	25.480	0.0	180			
240	min	Winter	21.109	0.0	240			
360	min	Winter	16.158	0.0	356			
	©1982-2018 Innovyze							

Wardell Armstrong LLP		
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Mirro
Date 24/12/2020 12:56	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018 1	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Stat	cus	
480	min Wi	nter	15.158	0.508	45.0	7443.8	Flood	Risk
600	min Wi	nter	15.179	0.529	46.8	7766.4	Flood	Risk
720	min Wi	nter	15.192	0.542	48.0	7970.9	Flood	Risk
960	min Wi	nter	15.203	0.553	48.9	8142.4	Flood	Risk
1440	min Wi	nter	15.195	0.545	48.2	8008.5	Flood	Risk
2160	min Wi	nter	15.156	0.506	44.9	7418.6	Flood	Risk
2880	min Wi	nter	15.114	0.464	44.0	6775.1	Flood	Risk
4320	min Wi	nter	15.028	0.378	43.1	5492.8	Flood	Risk
5760	min Wi	nter	14.953	0.303	42.4	4386.9	Flood	Risk
7200	min Wi	nter	14.650	0.000	0.0	0.0		ОК
8640	min Wi	nter	14.650	0.000	0.0	0.0		ОК
10080	min Wi	nter	14.650	0.000	0.0	0.0		O K

	Stor	m	Rain	${\tt Flooded}$	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
400		Winter	13.321	0.0	474
600	min	Winter	11.410	0.0	590
720	min	Winter	10.016	0.0	702
960	min	Winter	8.080	0.0	926
1440	min	Winter	5.860	0.0	1356
2160	min	Winter	4.154	0.0	1712
2880	min	Winter	3.223	0.0	2164
4320	min	Winter	2.228	0.0	3064
5760	min	Winter	1.712	0.0	3872
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:56	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	niailiade
XP Solutions	Source Control 2018.1	

Rainfall Details

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 9.483

Time (mins) Area From: To: (ha)

0 4 9.483

Note: This output relates to the Onshore Substations and is inclusive of the operational access road. Micro drainage area expressed in hectares. Area footprints and impermeability are summarised in the table below:

Equipment¤	East·Anglia·TWO·(m²)¤	East-Anglia-ONE-North-(m²)	
Operational-access-road-¤	13,600¤		
Overal·cable·sealing·end·compounds· and·cable·sealing·end·with·circuit· breaker·compound·operational·footprint¤	N	/A¤	
Permanent·access·road·to·sealing·end· compound¤	N	/A¤	
SuDS-basin-footprint¤	16,637	(9,603)*¤	
Total-impermeable-area¤	94,837-(87,803)*¤	

 $^{{}^*\}text{-}Primary\text{-}figures\text{-}represent\text{-}24hr\text{-}drainage\text{-}specification.} \\ \text{-}Figures\text{-}in\text{-}brackets\text{-}represent\text{-}the\text{-}design\text{-}sizing\text{-}} \\ \text{for\text{-}}48hr\text{-}drainage\text{-}specification\text{-}$

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:56	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	niairiade
XP Solutions	Source Control 2018.1	'

Model Details

Storage is Online Cover Level (m) 15.250

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m²)	Depth (m)	Area (m ²)	Depth (m)	Area (m²)
0.000	14217.0	0.500	15075.0	0.600	16637.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:59	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	pianage
XP Solutions	Source Control 2018.1	1

Half Drain Time exceeds 7 days.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
		_					
			14.763		5.8	2323.5	O K
			14.802		5.9	3136.4	O K
			14.843		5.9	3979.2	O K
			14.893		6.0	5026.3	O K
180	min	Summer	14.928	0.278	6.0	5771.0	O K
240	min	Summer	14.956	0.306	6.0	6361.7	Flood Risk
360	min	Summer	14.999	0.349	6.1	7278.0	Flood Risk
480	min	Summer	15.032	0.382	6.1	7972.8	Flood Risk
600	min	Summer	15.057	0.407	6.2	8508.5	Flood Risk
720	min	Summer	15.077	0.427	6.2	8934.0	Flood Risk
960	min	Summer	15.106	0.456	6.2	9549.4	Flood Risk
1440	min	Summer	15.139	0.489	6.3	10260.2	Flood Risk
2160	min	Summer	15.160	0.510	6.4	10709.9	Flood Risk
2880	min	Summer	15.168	0.518	6.4	10872.6	Flood Risk
4320	min	Summer	15.167	0.517	6.4	10849.6	Flood Risk
5760	min	Summer	15.160	0.510	6.4	10699.0	Flood Risk
7200	min	Summer	14.650	0.000	0.0	0.0	ОК
8640	min	Summer	14.650	0.000	0.0	0.0	ОК
10080	min	Summer	14.650	0.000	0.0	0.0	O K
15	min	Winter	14.776	0.126	5.8	2602.6	ОК
30	min	Winter	14.820	0.170	5.9	3513.4	ОК
			14.865		5.9	4458.1	0 K
			14.921		6.0	5632.5	0 K
		Winter		0.311	6.0		Flood Risk
			14.993		6.1		Flood Risk
			15.041		6.1		Flood Risk
500	111111	**********	TO . 0 4 T	0.001	0.1	0102.7	11000 1/101

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
15	min	Summer	122.248	0.0	19
30	min	Summer	82.572	0.0	34
60	min	Summer	52.458	0.0	64
120	min	Summer	33.215	0.0	124
180	min	Summer	25.480	0.0	184
240	min	Summer	21.109	0.0	244
360	min	Summer	16.158	0.0	364
480	min	Summer	13.321	0.0	484
600	min	Summer	11.410	0.0	604
720	min	Summer	10.016	0.0	724
960	min	Summer	8.080	0.0	964
1440	min	Summer	5.860	0.0	1444
2160	min	Summer	4.154	0.0	2164
2880	min	Summer	3.224	0.0	2884
4320	min	Summer	2.228	0.0	4324
5760	min	Summer	1.712	0.0	5760
7200	min	Summer	-0.012	0.0	0
8640	min	Summer	-0.010	0.0	0
10080	min	Summer	-0.008	0.0	0
15	min	Winter	122.248	0.0	19
30	min	Winter	82.572	0.0	34
60	min	Winter	52.458	0.0	64
120	min	Winter	33.215	0.0	124
180	min	Winter	25.480	0.0	184
240	min	Winter	21.109	0.0	242
360	min	Winter	16.158	0.0	362

©1982-2018 Innovyze

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:59	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilage
XP Solutions	Source Control 2018.1	'

Storm Event		Max Level I (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
480 min W	Winter 1	5.078	0.428	6.2	8944.9	Flood Risk
600 min V	Winter 1	5.106 (0.456	6.2	9549.0	Flood Risk
720 min V	Winter 1	5.128 (0.478	6.2	10030.0	Flood Risk
960 min W	Winter 1	5.161 (0.511	6.4	10727.5	Flood Risk
1440 min W	Winter 1	5.198 (0.548	6.8	11536.9	Flood Risk
2160 min W	Winter 1	5.221 (0.571	7.0	12058.3	Flood Risk
2880 min W	Winter 1	5.230	0.580	7.1	12259.8	Flood Risk
4320 min W	Winter 1	5.230	0.580	7.1	12274.5	Flood Risk
5760 min W	Winter 1	5.225	0.575	7.0	12151.0	Flood Risk
7200 min W	Winter 1	4.650 (0.000	0.0	0.0	O K
8640 min W	Winter 1	4.650 (0.000	0.0	0.0	O K
10080 min V	Winter 1	4.650	0.000	0.0	0.0	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
480	min	Winter	13.321	0.0	482
600	min	Winter	11.410	0.0	602
720	min	Winter	10.016	0.0	720
960	min	Winter	8.080	0.0	956
1440	min	Winter	5.860	0.0	1430
2160	min	Winter	4.154	0.0	2140
2880	min	Winter	3.223	0.0	2852
4320	min	Winter	2.228	0.0	4240
5760	min	Winter	1.712	0.0	5648
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP			
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N		
Newton Chambers Road	Onshore Substations		
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro	
Date 24/12/2020 12:59	Designed by CS	Drainage	
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	niailiade	
XP Solutions	Source Control 2018.1	1	

Rainfall Details

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 10.155

Time (mins) Area From: To: (ha)

0 4 10.155

Note: Under a FoS of 10, SuDS basin footprints increase by a factor of 1.2. This fully accommodates the storage requirements for the scenario but the drain down time (exceedance of 7 days) is not acceptable for an infiltration only design.

Equipment¤	East-Anglia-TWO-(m²)¤	East-Anglia-ONE-North-(m²)	
Operational-access-road-¤	13,	600¤	
Overal-cable-sealing-end-compounds- and-cable-sealing-end-with-circuit- breaker-compound-operational-footprintx	N/A¤		
Permanent-access-road-to-sealing-end- compound¤	N	/A¤	
SuDS·basin·footprint¤	16,637	(9,603)*¤	
Total·impermeable·area¤	94,837 (87,803)*¤	

^{*-}Primary-figures-represent-24hr-drainage-specification.-Figures-in-brackets-represent-the-design-sizing-for-48hr-drainage-specification#

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:59	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018.1	1

Model Details

Storage is Online Cover Level (m) 15.250

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m ²)
0.	.000	204	172.0	0.	500	215	00.0	0.	600	233	57.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:50	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	pialilade
XP Solutions	Source Control 2018.1	1

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

Half Drain Time : 1461 minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status	
15	min	Summer	14.797	0.147	30.7	1570.1	ОК
30	min	Summer	14.846	0.196	31.1	2107.7	O K
60	min	Summer	14.895	0.245	31.5	2645.3	O K
120	min	Summer	14.953	0.303	32.0	3279.8	Flood Risk
180	min	Summer	14.991	0.341	32.3	3704.8	Flood Risk
240	min	Summer	15.020	0.370	32.6	4023.3	Flood Risk
360	min	Summer	15.060	0.410	32.9	4475.9	Flood Risk
480	min	Summer	15.087	0.437	33.1	4775.3	Flood Risk
600	min	Summer	15.104	0.454	33.3	4965.6	Flood Risk
720	min	Summer	15.114	0.464	33.3	5081.0	Flood Risk
960	min	Summer	15.121	0.471	33.4	5156.1	Flood Risk
1440	min	Summer	15.108	0.458	33.3	5010.8	Flood Risk
2160	min	Summer	15.075	0.425	33.0	4638.6	Flood Risk
2880	min	Summer	15.041	0.391	32.7	4261.8	Flood Risk
4320	min	Summer	14.979	0.329	32.2	3568.6	Flood Risk
5760	min	Summer	14.927	0.277	31.8	2996.2	O K
7200	min	Summer	14.650	0.000	0.0	0.0	O K
8640	min	Summer	14.650	0.000	0.0	0.0	O K
10080	min	Summer	14.650	0.000	0.0	0.0	O K
15	min	Winter	14.814	0.164	30.8	1760.4	O K
30	min	Winter	14.870	0.220	31.3	2365.0	O K
60	min	Winter	14.925	0.275	31.8	2971.2	O K
120	min	Winter	14.990	0.340	32.3	3693.7	Flood Risk
180	min	Winter	15.034	0.384	32.7	4181.2	Flood Risk
240	min	Winter	15.067	0.417	33.0	4548.7	Flood Risk
360	min	Winter	15.114	0.464	33.3	5078.9	Flood Risk

Storm		Rain	Flooded	Time-Peak		
	Even	t	(mm/hr)	Volume	(mins)	
				(m³)		
15	min	Summer	122.248	0.0	19	
30	min	Summer	82.572	0.0	34	
60	min	Summer	52.458	0.0	64	
120	min	Summer	33.215	0.0	124	
180	min	Summer	25.480	0.0	182	
240	min	Summer	21.109	0.0	242	
360	min	Summer	16.158	0.0	362	
480	min	Summer	13.321	0.0	482	
600	min	Summer	11.410	0.0	602	
720	min	Summer	10.016	0.0	722	
960	min	Summer	8.080	0.0	960	
1440	min	Summer	5.860	0.0	1242	
2160	min	Summer	4.154	0.0	1600	
2880	min	Summer	3.224	0.0	1988	
4320	min	Summer	2.228	0.0	2772	
5760	min	Summer	1.712	0.0	3576	
7200	min	Summer	-0.012	0.0	0	
8640	min	Summer	-0.010	0.0	0	
10080	min	Summer	-0.008	0.0	0	
15	min	Winter	122.248	0.0	19	
30	min	Winter	82.572	0.0	33	
60	min	Winter	52.458	0.0	62	
120	min	Winter	33.215	0.0	122	
180	min	Winter	25.480	0.0	180	
240	min	Winter	21.109	0.0	240	
360	min	Winter	16.158	0.0	356	
		©1982-	-2018 In	nnovyze		

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:50	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Diamage
XP Solutions	Source Control 2018.1	1

Storm Event		Max Level (m)	Max Depth (m)	Infiltration		Stat	us		
	480	min	Winter	15.146	0.496	33.6	5438.0	Flood	Risk
	600	min	Winter	15.166	0.516	34.9	5672.7	Flood	Risk
	720	min	Winter	15.179	0.529	35.8	5819.7	Flood	Risk
	960	min	Winter	15.189	0.539	36.6	5938.2	Flood	Risk
	1440	min	Winter	15.179	0.529	35.8	5829.5	Flood	Risk
	2160	min	Winter	15.141	0.491	33.6	5383.7	Flood	Risk
	2880	min	Winter	15.098	0.448	33.2	4902.9	Flood	Risk
	4320	min	Winter	15.014	0.364	32.5	3954.5	Flood	Risk
	5760	min	Winter	14.940	0.290	31.9	3140.4		O K
	7200	min	Winter	14.650	0.000	0.0	0.0		O K
	8640	min	Winter	14.650	0.000	0.0	0.0		O K
	10080	min	Winter	14.650	0.000	0.0	0.0		O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
480	min	Winter	13.321	0.0	474
600	min	Winter	11.410	0.0	588
720	min	Winter	10.016	0.0	702
960	min	Winter	8.080	0.0	926
1440	min	Winter	5.860	0.0	1356
2160	min	Winter	4.154	0.0	1708
2880	min	Winter	3.223	0.0	2160
4320	min	Winter	2.228	0.0	3028
5760	min	Winter	1.712	0.0	3864
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:50	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	niailiade
XP Solutions	Source Control 2018.1	

Rainfall Details

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 6.951

Time (mins) Area From: To: (ha)

0 4 6.951

Note: This output relates to the National Grid infrastructure and is inclusive of the cable sealing end compounds and permanent access road. Micro drainage area expressed in hectares. Area footprints and impermeability are summarised in the table below:

Equipment¤	National-Grid-Infrastructure-(m²)¤
Overall-substation-operational-footprint¤	44,950¤
Operational-access-road-¤	N/A¤
Overal-cable-sealing-end-compounds-and-cable- sealing-end-with-circuit-breaker-compound- operational-footprint¤	10,000¤
Permanent-access-road-to-sealing-end-compound¤	1,850¶ ¤
SuDS·basin·footprint¤	12,712·(7,520)*¤
Total·impermeable·area¤	69,512·(64,320)*¤

^{*·}Primary·figures·represent·24hr·drainage·specification.·Figures·in·brackets·represent·the·design·sizing·life

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:50	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Diamage
XP Solutions	Source Control 2018.1	

Model Details

Storage is Online Cover Level (m) 15.250

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	10609.0	0.500	11351.0	0.600	12712.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:57	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Dialilade
XP Solutions	Source Control 2018.1	1

Half Drain Time exceeds 7 days.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer				1706.3	O K
30	min	Summer	14.799	0.149	4.4	2303.3	O K
60	min	Summer	14.839	0.189	4.4	2922.2	O K
120	min	Summer	14.888	0.238	4.5	3691.0	O K
180	min	Summer	14.923	0.273	4.5	4237.6	O K
240	min	Summer	14.951	0.301	4.5	4671.2	Flood Risk
360	min	Summer	14.993	0.343	4.6	5343.6	Flood Risk
480	min	Summer	15.025	0.375	4.6	5853.3	Flood Risk
600	min	Summer	15.050	0.400	4.6	6246.1	Flood Risk
720	min	Summer	15.069	0.419	4.7	6558.0	Flood Risk
960	min	Summer	15.097	0.447	4.7	7008.7	Flood Risk
1440	min	Summer	15.129	0.479	4.7	7528.2	Flood Risk
2160	min	Summer	15.150	0.500	4.7	7854.9	Flood Risk
2880	min	Summer	15.157	0.507	4.8	7971.4	Flood Risk
4320	min	Summer	15.155	0.505	4.8	7947.9	Flood Risk
5760	min	Summer	15.148	0.498	4.7	7829.7	Flood Risk
7200	min	Summer	14.650	0.000	0.0	0.0	O K
8640	min	Summer	14.650	0.000	0.0	0.0	O K
10080	min	Summer	14.650	0.000	0.0	0.0	O K
15	min	Winter	14.774	0.124	4.4	1911.4	O K
30	min	Winter	14.817	0.167	4.4	2580.2	O K
60	min	Winter	14.862	0.212	4.5	3273.9	O K
120	min	Winter	14.917	0.267	4.5	4136.1	O K
180	min	Winter	14.956	0.306	4.5	4749.8	Flood Risk
240	min	Winter	14.986	0.336	4.6	5237.0	Flood Risk
360	min	Winter	15.034	0.384	4.6	5993.1	Flood Risk

Storm		Rain	Flooded	Time-Peak		
	Even	t	(mm/hr)	Volume	(mins)	
				(m³)		
			122.248	0.0	19	
			82.572	0.0	34	
			52.458		64	
			33.215	0.0	124	
180	min	Summer	25.480	0.0	184	
240	min	Summer	21.109	0.0	244	
360	min	Summer	16.158	0.0	364	
480	min	Summer	13.321	0.0	484	
			11.410	0.0	604	
720	min	Summer	10.016	0.0	724	
960	min	Summer	8.080	0.0	964	
1440	min	Summer	5.860	0.0	1444	
2160	min	Summer	4.154	0.0	2164	
2880	min	Summer	3.224	0.0	2884	
4320	min	Summer	2.228	0.0	4324	
5760	min	Summer	1.712	0.0	5760	
7200	min	Summer	-0.012	0.0	0	
8640	min	Summer	-0.010	0.0	0	
10080	min	Summer	-0.008	0.0	0	
15	min	Winter	122.248	0.0	19	
30	min	Winter	82.572	0.0	34	
60	min	Winter	52.458	0.0	64	
120	min	Winter	33.215	0.0	124	
180	min	Winter	25.480	0.0	184	
240	min	Winter	21.109	0.0	242	
360	min	Winter	16.158	0.0	362	
		©1982-	-2018 In	nnovyze		

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:57	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Drainage
XP Solutions	Source Control 2018 1	1

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Status
480	min	Winter	15.070	0.420	4.7	6567.0	Flood Risk
600	min	Winter	15.097	0.447	4.7	7010.1	Flood Risk
720	min	Winter	15.119	0.469	4.7	7362.7	Flood Risk
960	min	Winter	15.151	0.501	4.8	7873.8	Flood Risk
1440	min	Winter	15.187	0.537	5.1	8466.3	Flood Risk
2160	min	Winter	15.209	0.559	5.3	8845.5	Flood Risk
2880	min	Winter	15.218	0.568	5.4	8989.6	Flood Risk
4320	min	Winter	15.218	0.568	5.4	8993.7	Flood Risk
5760	min	Winter	15.212	0.562	5.3	8896.9	Flood Risk
7200	min	Winter	14.650	0.000	0.0	0.0	O K
8640	min	Winter	14.650	0.000	0.0	0.0	O K
10080	min	Winter	14.650	0.000	0.0	0.0	O K

		Stor	m	Rain	Flooded	Time-Peak
		Even	t	(mm/hr)	Volume	(mins)
					(m³)	
4	80	min	Winter	13.321	0.0	482
6	00	min	Winter	11.410	0.0	602
7	20	min	Winter	10.016	0.0	720
9	60	min	Winter	8.080	0.0	956
14	40	min	Winter	5.860	0.0	1430
21	60	min	Winter	4.154	0.0	2140
28	80	min	Winter	3.223	0.0	2852
43	20	min	Winter	2.228	0.0	4240
57	60	min	Winter	1.712	0.0	5648
72	00	min	Winter	-0.012	0.0	0
86	40	min	Winter	-0.010	0.0	0
100	80	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:57	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	pialilade
XP Solutions	Source Control 2018.1	

Rainfall Details

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 7.458

Time (mins) Area From: To: (ha)

0 4 7.458

Note: Under a FoS of 10, SuDS basin footprints increase by a factor of 1.2. This fully accommodates the storage requirements for the scenario but the drain down time (exceedance of 7 days) is not acceptable for an infiltration only design.

Equipment ^p	National-Grid-Infrastructure-(m²)¤
Overall-substation-operational-footprint¤	44,950¤
Operational-access-road-¤	N/A¤
Overal-cable-sealing-end-compounds-and-cable- sealing-end-with-circuit-breaker-compound- operational-footprint¤	10,000¤
Permanent-access-road-to-sealing-end-compound¤	1,850¶ ¤
SuDS-basin-footprint¤	12,712·(7,520)*¤
Total-impermeable-area¤	69,512 ⁻ (64,320)*¤

^{*-}Primary-figures-represent-24hr-drainage-specification.-Figures-in-brackets-represent-the-design-sizing-for-48hr-drainage-specification=

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	24Hr HDT 10mm/Hr	Micro
Date 24/12/2020 12:57	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Diamage
XP Solutions	Source Control 2018.1	

Model Details

Storage is Online Cover Level (m) 15.250

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	15277.0	0.500	16166.0	0.600	17782.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:03	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018.1	1

Half Drain Time : 2534 minutes.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

Storm		Max	Max	Max	Max	Status	
Event		Level	Depth	Infiltration	Volume		
			(m)	(m)	(1/s)	(m³)	
1 -			14 500	0 070	01.0	1004 6	0 77
			14.522			1994.6	O K
			14.613			2683.8	O K
			14.704			3384.3	O K
			14.813			4230.6	O K
			14.886			4813.6	O K
			14.943			5262.4	O K
360	min	Summer	15.025	0.775	25.4	5928.4	O K
480	min	Summer	15.083	0.833	25.8	6401.6	Flood Risk
600	min	Summer	15.123	0.873	26.1	6736.0	Flood Risk
720	min	Summer	15.152	0.902	26.3	6975.1	Flood Risk
960	min	Summer	15.185	0.935	26.5	7249.9	Flood Risk
1440	min	Summer	15.198	0.948	26.6	7358.5	Flood Risk
2160	min	Summer	15.159	0.909	26.3	7027.2	Flood Risk
2880	min	Summer	15.108	0.858	26.0	6609.1	Flood Risk
4320	min	Summer	15.015	0.765	25.3	5846.5	O K
5760	min	Summer	14.941	0.691	24.7	5253.2	O K
7200	min	Summer	14.250	0.000	0.0	0.0	O K
8640	min	Summer	14.250	0.000	0.0	0.0	O K
10080	min	Summer	14.250	0.000	0.0	0.0	O K
15	min	Winter	14.554	0.304	22.0	2235.6	O K
30	min	Winter	14.656	0.406	22.7	3009.4	O K
60	min	Winter	14.757	0.507	23.5	3797.6	ОК
120	min	Winter	14.879	0.629	24.3	4754.9	ОК
180	min	Winter	14.962	0.712	24.9	5417.0	ОК
240	min	Winter	15.025	0.775	25.4	5929.0	ОК
			15.118				Flood Risk

	Stor	m	Rain	${\tt Flooded}$	Time-Peak			
	Even	t	(mm/hr)	Volume	(mins)			
				(m³)				
			122.248	0.0	19			
			82.572	0.0	34			
			52.458	0.0	64			
			33.215	0.0	124			
180	min	Summer	25.480	0.0	184			
240	min	Summer	21.109	0.0	244			
360	min	Summer	16.158	0.0	362			
480	min	Summer	13.321	0.0	482			
600	min	Summer	11.410	0.0	602			
720	min	Summer	10.016	0.0	722			
960	min	Summer	8.080	0.0	962			
1440	min	Summer	5.860	0.0	1440			
2160	min	Summer	4.154	0.0	2052			
2880	min	Summer	3.224	0.0	2340			
4320	min	Summer	2.228	0.0	3072			
5760	min	Summer	1.712	0.0	3872			
7200	min	Summer	-0.012	0.0	0			
8640	min	Summer	-0.010	0.0	0			
10080	min	Summer	-0.008	0.0	0			
15	min	Winter	122.248	0.0	19			
30	min	Winter	82.572	0.0	34			
60	min	Winter	52.458	0.0	64			
120	min	Winter	33.215	0.0	122			
180	min	Winter	25.480	0.0	182			
240	min	Winter	21.109	0.0	240			
360	min	Winter	16.158	0.0	358			
	©1982-2018 Innovyze							

Wardell Armstrong LLP	Page 2	
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Project Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:03	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018.1	

Storm Event		Max Level (m)	-	Max Infiltration (1/s)		Stat	us	
480	min Wi	nter	15.184	0.934	26.5	7241.9	Flood	Risk
600	min Wi	nter	15.231	0.981	26.9	7635.3	Flood	Risk
720	min Wi	nter	15.265	1.015	28.0	7920.4	Flood	Risk
960	min Wi	nter	15.302	1.052	30.4	8249.2	Flood	Risk
1440	min Wi	nter	15.320	1.070	31.6	8413.1	Flood	Risk
2160	min Wi	nter	15.293	1.043	29.8	8164.2	Flood	Risk
2880	min Wi	nter	15.243	0.993	26.9	7731.5	Flood	Risk
4320	min Wi	nter	15.131	0.881	26.1	6794.9	Flood	Risk
5760	min Wi	nter	15.036	0.786	25.4	6022.4		O K
7200	min Wi	nter	14.250	0.000	0.0	0.0		O K
8640	min Wi	nter	14.250	0.000	0.0	0.0		O K
10080	min Wi	nter	14,250	0.000	0.0	0.0		O K

Storm Event			Rain (mm/hr)	Flooded Volume	Time-Peak (mins)
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(11111) 112)	(m ³)	()
480	min	Winter	13.321	0.0	476
600	min	Winter	11.410	0.0	594
720	min	Winter	10.016	0.0	710
960	min	Winter	8.080	0.0	942
1440	min	Winter	5.860	0.0	1396
2160	min	Winter	4.154	0.0	2052
2880	min	Winter	3.223	0.0	2680
4320	min	Winter	2.228	0.0	3288
5760	min	Winter	1.712	0.0	4208
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Project Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:03	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	niailiade
XP Solutions	Source Control 2018.1	1

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 8.780

Time (mins) Area From: To: (ha)

0 4 8.780

Note: Under a FoS of 10, SuDS basin footprints increase by a factor of 1.2. This fully accommodates the storage requirements for the scenario but the drain down time (exceedance of 7 days) is not acceptable for an infiltration only design.

Equipment¤	East·Anglia·TWO·(m²)¤	East-Anglia-ONE-North-(m²)		
Operational-access-road-¤	13,600¤			
Overal-cable-sealing-end-compounds- and-cable-sealing-end-with-circuit- breaker-compound-operational-footprint¤	N/A¤			
Permanent-access-road-to-sealing-end- compound¤	N/A¤			
SuDS·basin·footprint¤	16,637·(9,603)*¤			
Total·impermeable·area¤	94,837·(87,803)*¤			

^{*-}Primary-figures-represent-24hr-drainage-specification.-Figures-in-brackets-represent-the-design-sizing-for-48hr-drainage-specification#

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Project Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:03	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 15.350

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.250 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m ²)	Depth (m)	Area (m²)
0.000	7175.0	0.700	8040.0	1.000	8426.0	1.100	9603.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:08	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilade
XP Solutions	Source Control 2018.1	1

Half Drain Time exceeds 7 days.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	14.450	0.200	3.0	2092.9	O K
30	min	Summer	14.518	0.268	3.1	2825.8	O K
60	min	Summer	14.589	0.339	3.2	3587.0	O K
120	min	Summer	14.676	0.426	3.2	4535.1	O K
180	min	Summer	14.738	0.488	3.3	5211.1	O K
240	min	Summer	14.786	0.536	3.3	5748.7	O K
360	min	Summer	14.861	0.611	3.4	6585.5	O K
480	min	Summer	14.918	0.668	3.4	7223.3	O K
600	min	Summer	14.961	0.711	3.5	7717.8	O K
720	min	Summer	14.996	0.746	3.5	8113.3	O K
960	min	Summer	15.046	0.796	3.5	8691.9	O K
1440	min	Summer	15.106	0.856	3.6	9381.3	Flood Risk
2160	min	Summer	15.147	0.897	3.6	9860.1	Flood Risk
2880	min	Summer	15.166	0.916	3.6	10080.9	Flood Risk
4320	min	Summer	15.177	0.927	3.6	10205.2	Flood Risk
5760	min	Summer	15.177	0.927	3.6	10209.9	Flood Risk
7200	min	Summer	14.250	0.000	0.0	0.0	O K
8640	min	Summer	14.250	0.000	0.0	0.0	O K
10080	min	Summer	14.250	0.000	0.0	0.0	O K
15	min	Winter	14.473	0.223	3.1	2344.2	O K
30	min	Winter	14.550	0.300	3.1	3165.4	O K
60	min	Winter	14.629	0.379	3.2	4018.4	O K
120	min	Winter	14.726	0.476	3.3	5081.3	O K
180	min	Winter	14.794	0.544	3.3	5839.6	O K
240	min	Winter	14.848	0.598	3.4	6442.9	O K
360	min	Winter	14.932	0.682	3.4	7382.5	O K

Storm		Rain	Flooded	Time-Peak		
Ev	vent	t	(mm/hr)	Volume	(mins)	
				(m³)		
			122.248		19	
			82.572	0.0	34	
			52.458		64	
			33.215		124	
			25.480	0.0	184	
			21.109		244	
			16.158		364	
480 m	nin	Summer	13.321	0.0	484	
			11.410	0.0	604	
720 m	nin	Summer	10.016	0.0	724	
960 m	nin	Summer	8.080	0.0	964	
1440 m	nin	Summer	5.860	0.0	1444	
2160 m	nin	Summer	4.154	0.0	2164	
2880 m	nin	Summer	3.224	0.0	2884	
4320 m	nin	Summer	2.228	0.0	4324	
5760 m	nin	Summer	1.712	0.0	5768	
7200 m	nin	Summer	-0.012	0.0	0	
8640 m	nin	Summer	-0.010	0.0	0	
10080 m	nin	Summer	-0.008	0.0	0	
15 m	nin	Winter	122.248	0.0	19	
30 m	nin	Winter	82.572	0.0	34	
60 m	nin	Winter	52.458	0.0	64	
120 m	nin	Winter	33.215	0.0	124	
180 m	nin	Winter	25.480	0.0	184	
240 m	nin	Winter	21.109	0.0	244	
360 m	nin	Winter	16.158	0.0	362	
		©1982-	-2018 Ir	nnovyze		

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:08	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Dialilage
XP Solutions	Source Control 2018.1	'

	Stori Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Stat	us
480	min	Winter	14.995	0.745	3.5	8099.3		ОК
600	min	Winter	15.043	0.793	3.5	8655.6		O K
720	min	Winter	15.082	0.832	3.6	9101.0	Flood	Risk
960	min	Winter	15.138	0.888	3.6	9754.1	Flood	Risk
1440	min	Winter	15.205	0.955	3.7	10536.2	Flood	Risk
2160	min	Winter	15.252	1.002	3.7	11088.1	Flood	Risk
2880	min	Winter	15.273	1.023	3.9	11350.0	Flood	Risk
4320	min	Winter	15.287	1.037	4.0	11517.6	Flood	Risk
5760	min	Winter	15.290	1.040	4.0	11551.8	Flood	Risk
7200	min	Winter	14.250	0.000	0.0	0.0		O K
8640	min	Winter	14.250	0.000	0.0	0.0		O K
10080	min	Winter	14.250	0.000	0.0	0.0		ОК

Storm		Rain	Flooded	Time-Peak	
	Event		(mm/hr)	Volume	(mins)
				(m³)	
480	min	Winter	13.321	0.0	482
600	min	Winter	11.410	0.0	602
720	min	Winter	10.016	0.0	722
960	min	Winter	8.080	0.0	962
1440	min	Winter	5.860	0.0	1440
2160	min	Winter	4.154	0.0	2144
2880	min	Winter	3.223	0.0	2856
4320	min	Winter	2.228	0.0	4280
5760	min	Winter	1.712	0.0	5704
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP	Page 3	
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:08	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	Diamage
XP Solutions	Source Control 2018.1	

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 9.141

Time (mins) Area From: To: (ha)

0 4 9.141

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Note: Under a FoS of 10, SuDS basin footprints increase by a factor of 1.2. This fully accommodates the storage requirements for the scenario but the drain down time (exceedance of 7 days) is not acceptable for an infiltration only design.

Equipment¤	East-Anglia-TWO-(m²)¤	East-Anglia-ONE-North-(m²)	
Operational-access-road-¤	13,600¤		
Overal·cable·sealing·end·compounds· and·cable·sealing·end·with·circuit· breaker·compound·operational·footprint¤	N/A¤		
Permanent-access-road-to-sealing-end- compound¤	N/A¤		
SuDS basin footprint¤	16,637·(9,603)*¤		
Total-impermeable-area¤	94,837·(87,803)*¤		

^{*-}Primary-figures-represent-24hr-drainage-specification.-Figures-in-brackets-represent-the-design-sizing-for-48hr-drainage-specification=

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	Onshore Substations	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:08	Designed by CS	Drainage
File PROJECT SUBSTATIONS - INFILTRAT	Checked by	pianade
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 15.350

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.250 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m ²)	Depth (m)	Area (m²)	Depth (m)	Area (m ²)	Depth (m)	Area (m²)
0.000	10331.0	0.700	11365.0	1.000	11823.0	1.100	13210.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:02	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Dialilade
XP Solutions	Source Control 2018.1	

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required. Half Drain Time : 2488 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	14.914	0.264	16.6	1460.8	ОК
30	min	Summer	15.002	0.352	17.1	1965.3	O K
60	min	Summer	15.091	0.441	17.6	2477.5	O K
120	min	Summer	15.195	0.545	18.3	3095.5	O K
180	min	Summer	15.266	0.616	18.7	3520.4	O K
240	min	Summer	15.319	0.669	19.0	3846.8	O K
360	min	Summer	15.398	0.748	19.5	4329.9	O K
480	min	Summer	15.453	0.803	19.9	4671.4	Flood Risk
600	min	Summer	15.491	0.841	20.1	4911.3	Flood Risk
720	min	Summer	15.518	0.868	20.3	5081.2	Flood Risk
960	min	Summer	15.548	0.898	20.5	5272.3	Flood Risk
1440	min	Summer	15.558	0.908	20.5	5332.6	Flood Risk
2160	min	Summer	15.517	0.867	20.3	5073.4	Flood Risk
2880	min	Summer	15.468	0.818	20.0	4768.7	Flood Risk
4320	min	Summer	15.379	0.729	19.4	4211.4	O K
5760	min	Summer	15.308	0.658	19.0	3774.6	O K
7200	min	Summer	14.650	0.000	0.0	0.0	O K
8640	min	Summer	14.650	0.000	0.0	0.0	O K
10080	min	Summer	14.650	0.000	0.0	0.0	O K
15	min	Winter	14.945	0.295	16.7	1637.4	O K
30	min	Winter	15.044	0.394	17.3	2203.7	O K
60	min	Winter	15.142	0.492	17.9	2780.2	O K
120	min	Winter	15.259	0.609	18.7	3479.4	O K
180	min	Winter	15.338	0.688	19.1	3962.1	O K
240	min	Winter	15.399	0.749	19.5	4334.8	O K
360	min	Winter	15.488	0.838	20.1	4889.7	Flood Risk

Storm			Rain	Flooded	Time-Peak			
	Even	t	(mm/hr)	Volume	(mins)			
				(m³)				
			122.248	0.0	19			
			82.572	0.0	34			
			52.458		64			
			33.215	0.0	124			
180	min	Summer	25.480	0.0	184			
240	min	Summer	21.109	0.0	244			
360	min	Summer	16.158	0.0	362			
480	min	Summer	13.321	0.0	482			
			11.410	0.0	602			
720	min	Summer	10.016	0.0	722			
960	min	Summer	8.080	0.0	962			
1440	min	Summer	5.860	0.0	1440			
2160	min	Summer	4.154	0.0	1968			
2880	min	Summer	3.224	0.0	2280			
4320	min	Summer	2.228	0.0	3028			
5760	min	Summer	1.712	0.0	3856			
7200	min	Summer	-0.012	0.0	0			
8640	min	Summer	-0.010	0.0	0			
10080	min	Summer	-0.008	0.0	0			
15	min	Winter	122.248	0.0	19			
30	min	Winter	82.572	0.0	34			
60	min	Winter	52.458	0.0	64			
120	min	Winter	33.215	0.0	122			
180	min	Winter	25.480	0.0	182			
240	min	Winter	21.109	0.0	240			
360	min	Winter	16.158	0.0	358			
		©1982-	-2018 In	nnovyze				
	1							

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:02	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	niamade
XP Solutions	Source Control 2018.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Stat	us	
480	min Wi	inter	15.550	0.900	20.5	5286.0	Flood	Risk
600	min Wi	inter	15.594	0.944	20.8	5568.9	Flood	Risk
720	min Wi	inter	15.626	0.976	21.0	5773.6	Flood	Risk
960	min Wi	inter	15.663	1.013	21.9	6015.5	Flood	Risk
1440	min Wi	inter	15.681	1.031	22.9	6132.0	Flood	Risk
2160	min Wi	inter	15.651	1.001	21.2	5930.8	Flood	Risk
2880	min Wi	inter	15.593	0.943	20.8	5560.7	Flood	Risk
4320	min Wi	inter	15.486	0.836	20.1	4881.9	Flood	Risk
5760	min Wi	inter	15.395	0.745	19.5	4308.1		O K
7200	min Wi	inter	14.650	0.000	0.0	0.0		O K
8640	min Wi	inter	14.650	0.000	0.0	0.0		O K
10080	min Wi	inter	14.650	0.000	0.0	0.0		O K

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
480	min	Winter	13.321	0.0	476
600	min	Winter	11.410	0.0	594
720	min	Winter	10.016	0.0	710
960	min	Winter	8.080	0.0	942
1440	min	Winter	5.860	0.0	1398
2160	min	Winter	4.154	0.0	2056
2880	min	Winter	3.223	0.0	2628
4320	min	Winter	2.228	0.0	3284
5760	min	Winter	1.712	0.0	4160
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP		Page 3
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:02	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	niailiade
XP Solutions	Source Control 2018.1	

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 6.432

Time (mins) Area From: To: (ha)

0 4 6.432

Note: This output relates to the National Grid infrastructure and is inclusive of the cable sealing end compounds and permanent access road. Micro drainage area expressed in hectares. Area footprints and impermeability are summarised in the table below:

Equipment¤	National-Grid-Infrastructure-(m²)¤
Overall-substation-operational-footprint¤	44,950¤
Operational-access-road-¤	N/A¤
Overal-cable-sealing-end-compounds-and-cable- sealing-end-with-circuit-breaker-compound- operational-footprint¤	10,000¤
Permanent-access-road-to-sealing-end-compound¤	1,850¶ ¤
SuDS·basin·footprint¤	12,712·(7,520)*¤
Total·impermeable·area¤	69,512·(64,320)*¤

^{*·}Primary·figures·represent·24hr·drainage·specification.·Figures·in·brackets·represent·the·design·sizing·life

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:02	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	niailiade
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 15.750

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 1.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m)	Area (m²)						
0.000	5390.0	0.700	6143.0	1.000	6481.0	1.100	7518.0

Wardell Armstrong LLP		Page 1
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:06	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Dialilade
XP Solutions	Source Control 2018.1	

Half Drain Time exceeds 7 days.

Note the status column provides an indication of the worst case scenario and should be reviewed alongside the maximum volumes. This is then used to identify the critical storm duration and volume of storage required.

Storm		Max	Max	Max	Max	Stat	us		
	Event		Level	Depth	Infiltration	Volume			
			(m)	(m)	(1/s)	(m³)			
				0 105	0.0	1505 0			
			14.845			1535.8		0	
			14.912			2073.6		0	
			14.980			2632.1		0	
120	min	Summer	15.065	0.415		3327.6		0	K
180	min	Summer	15.124	0.474	2.5	3823.5		0	K
240	min	Summer	15.171	0.521	2.5	4217.7		0	K
360	min	Summer	15.244	0.594	2.6	4831.2		0	K
480	min	Summer	15.298	0.648	2.6	5298.7		0	K
600	min	Summer	15.340	0.690	2.7	5660.9		0	K
720	min	Summer	15.374	0.724	2.7	5950.5		0	K
960	min	Summer	15.422	0.772	2.7	6373.9		0	K
1440	min	Summer	15.480	0.830	2.8	6877.3	Flood	Ris	sk
2160	min	Summer	15.519	0.869	2.8	7224.8	Flood	Ris	sk
2880	min	Summer	15.537	0.887	2.8	7383.1	Flood	Ris	sk
4320	min	Summer	15.546	0.896	2.8	7466.8	Flood	Ris	sk
5760	min	Summer	15.546	0.896	2.8	7463.0	Flood	Ris	sk
7200	min	Summer	14.650	0.000	0.0	0.0		0	K
8640	min	Summer	14.650	0.000	0.0	0.0		0	K
10080	min	Summer	14.650	0.000	0.0	0.0		0	K
15	min	Winter	14.868	0.218	2.3	1720.2		0	K
30	min	Winter	14.942	0.292	2.4	2322.8		0	K
60	min	Winter	15.019	0.369	2.4	2948.7		0	K
120	min	Winter	15.113	0.463	2.5	3728.4		0	K
			15.179			4284.6			K
			15.231			4727.0			K
			15.312			5416.0		0	

	Stor	m	Rain	Flooded	Time-Peak						
	Even	t	(mm/hr)	Volume	(mins)						
				(m³)							
15	min	Summer	122.248	0.0	19						
			82.572		34						
60	min	Summer	52.458	0.0	64						
120	min	Summer	33.215	0.0	124						
180	min	Summer	25.480	0.0	184						
240	min	Summer	21.109	0.0	244						
360	min	Summer	16.158	0.0	364						
480	min	Summer	13.321	0.0	484						
600	min	Summer	11.410	0.0	604						
720	min	Summer	10.016	0.0	724						
960	min	Summer	8.080	0.0	964						
1440	min	Summer	5.860	0.0	1444						
2160	min	Summer	4.154	0.0	2164						
2880	min	Summer	3.224	0.0	2884						
4320	min	Summer	2.228	0.0	4324						
5760	min	Summer	1.712	0.0	5768						
7200	min	Summer	-0.012	0.0	0						
8640	min	Summer	-0.010	0.0	0						
10080	min	Summer	-0.008	0.0	0						
15	min	Winter	122.248	0.0	19						
30	min	Winter	82.572	0.0	34						
60	min	Winter	52.458	0.0	64						
120	min	Winter	33.215	0.0	124						
180	min	Winter	25.480	0.0	184						
240	min	Winter	21.109	0.0	244						
360	min	Winter	16.158	0.0	362						
©1982-2018 Innovyze											

Wardell Armstrong LLP		Page 2
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:06	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	Dialilade
XP Solutions	Source Control 2018 1	

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Stat	us
480	min Wi	inter	15.373	0.723	2.7	5941.4		ОК
600	min Wi	inter	15.419	0.769	2.7	6349.0		ОК
720	min Wi	inter	15.457	0.807	2.7	6675.2	Flood	Risk
960	min Wi	inter	15.511	0.861	2.8	7153.1	Flood	Risk
1440	min Wi	inter	15.575	0.925	2.8	7724.3	Flood	Risk
2160	min Wi	inter	15.619	0.969	2.9	8125.4	Flood	Risk
2880	min Wi	inter	15.640	0.990	2.9	8314.7	Flood	Risk
4320	min Wi	inter	15.653	1.003	2.9	8432.3	Flood	Risk
5760	min Wi	inter	15.655	1.005	2.9	8451.7	Flood	Risk
7200	min Wi	inter	14.650	0.000	0.0	0.0		O K
8640	min Wi	inter	14.650	0.000	0.0	0.0		O K
10080	min Wi	inter	14.650	0.000	0.0	0.0		O K

	Stor	m	Rain	${\tt Flooded}$	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
480	min	Winter	13.321	0.0	482
600	mın	Winter	11.410	0.0	602
720	min	Winter	10.016	0.0	722
960	min	Winter	8.080	0.0	962
1440	min	Winter	5.860	0.0	1440
2160	min	Winter	4.154	0.0	2144
2880	min	Winter	3.223	0.0	2856
4320	min	Winter	2.228	0.0	4280
5760	min	Winter	1.712	0.0	5704
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0
10080	min	Winter	-0.008	0.0	0

Wardell Armstrong LLP	Page 3	
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:06	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	niailiade
XP Solutions	Source Control 2018.1	

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 641300 260300 TM 41300 60300 Shortest Storm (mins) 15
Data Type Catchment Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 6.708

Time (mins) Area From: To: (ha)

0 4 6.708

Note: Under a FoS of 10, SuDS basin footprints increase by a factor of 1.2. This fully accommodates the storage requirements for the scenario but the drain down time (exceedance of 7 days) is not acceptable for an infiltration only design.

Equipment¤	National·Grid·Infrastructure·(m²)¤
Overall-substation-operational-footprint¤	44,950¤
Operational-access-road-¤	N/A¤
Overal-cable-sealing-end-compounds-and-cable- sealing-end-with-circuit-breaker-compound- operational-footprint¤	10,000¤
Permanent-access-road-to-sealing-end-compound¤	1,850¶ ¤
SuDS-basin-footprint¤	12,712·(7,520)*¤
Total-impermeable-area¤	69,512·(64,320)*¤

^{*-}Primary-figures-represent-24hr-drainage-specification.-Figures-in-brackets-represent-the-design-sizing-for-48hr-drainage-specification=

Wardell Armstrong LLP		Page 4
Unit 5, Newton Business Park	East Anglia - EA2 / EA1N	
Newton Chambers Road	National Grid Infrastructure	
Sheffield S35 2PH	48Hr HDT 10mm/Hr	Micro
Date 24/12/2020 13:06	Designed by CS	Drainage
File NATIONAL GRID SUBSTATIONS - INF	Checked by	pramage
XP Solutions	Source Control 2018.1	

Storage is Online Cover Level (m) 15.750

<u>Infiltration Basin Structure</u>

Invert Level (m) 14.650 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.01000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01000

Depth (m	Area	(m²)	Depth	(m)	Area	(m ²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	
0.00) 7	761.0	0.	700	86	60.0	1.	000	90	61.0	1.	100	102	80.0	